# Wikipedia Authors - Extended Euclidean Algorithm (Highlights)

## Metadata
**Review**:: [readwise.io](https://readwise.io/bookreview/39194288)
**Source**:: #from/readwise #from/reader
**Zettel**:: #zettel/fleeting
**Status**:: #x
**Authors**:: [[Wikipedia Authors]]
**Full Title**:: Extended Euclidean Algorithm
**Category**:: #articles #readwise/articles
**Category Icon**:: 📰
**URL**:: [en.wikipedia.org](https://en.wikipedia.org/wiki/Extended_Euclidean_algorithm#Polynomial_extended_Euclidean_algorithm)
**Host**:: [[en.wikipedia.org]]
**Highlighted**:: [[2024-03-31]]
**Created**:: [[2024-03-31]]
## Highlights
- In mathematics, it is common to require that the greatest common divisor be a [monic polynomial](https://en.wikipedia.org/wiki/Monic_polynomial). To get this, it suffices to divide every element of the output by the [leading coefficient](https://en.wikipedia.org/wiki/Leading_coefficient) of $r_{k}$. This allows that, if *a* and *b* are coprime, one gets 1 in the right-hand side of Bézout's inequality. Otherwise, one may get any non-zero constant. ([View Highlight](https://read.readwise.io/read/01htadkc6wv0rpm82qe9q35crh)) ^700420596