# Wikipedia Authors - Extended Euclidean Algorithm (Highlights) ![rw-book-cover|256](https://readwise-assets.s3.amazonaws.com/static/images/article2.74d541386bbf.png) ## Metadata **Review**:: [readwise.io](https://readwise.io/bookreview/39194288) **Source**:: #from/readwise #from/reader **Zettel**:: #zettel/fleeting **Status**:: #x **Authors**:: [[Wikipedia Authors]] **Full Title**:: Extended Euclidean Algorithm **Category**:: #articles #readwise/articles **Category Icon**:: 📰 **URL**:: [en.wikipedia.org](https://en.wikipedia.org/wiki/Extended_Euclidean_algorithm#Polynomial_extended_Euclidean_algorithm) **Host**:: [[en.wikipedia.org]] **Highlighted**:: [[2024-03-31]] **Created**:: [[2024-03-31]] ## Highlights - In mathematics, it is common to require that the greatest common divisor be a [monic polynomial](https://en.wikipedia.org/wiki/Monic_polynomial). To get this, it suffices to divide every element of the output by the [leading coefficient](https://en.wikipedia.org/wiki/Leading_coefficient) of $r_{k}$. This allows that, if *a* and *b* are coprime, one gets 1 in the right-hand side of Bézout's inequality. Otherwise, one may get any non-zero constant. ([View Highlight](https://read.readwise.io/read/01htadkc6wv0rpm82qe9q35crh)) ^700420596