# Khan Academy Authors - Big-Θ (Big-Theta) Notation (Article) (Highlights) ![rw-book-cover|256](https://readwise-assets.s3.amazonaws.com/static/images/article2.74d541386bbf.png) ## Metadata **Cover**:: https://readwise-assets.s3.amazonaws.com/static/images/article2.74d541386bbf.png **Source**:: #from/readwise **Zettel**:: #zettel/fleeting **Status**:: #x **Authors**:: [[Khan Academy Authors]] **Full Title**:: Big-Θ (Big-Theta) Notation (Article) **Category**:: #articles #readwise/articles **Category Icon**:: 📰 **Document Tags**:: #algorithm #computer-science **URL**:: [www.khanacademy.org](https://www.khanacademy.org/computing/computer-science/algorithms/asymptotic-notation/a/big-big-theta-notation) **Host**:: [[www.khanacademy.org]] **Highlighted**:: [[2020-05-06]] **Created**:: [[2022-09-26]] ## Highlights - When we say that a particular running time is Θ(n) \Theta(n) Θ(n)\Theta, left parenthesis, n, right parenthesis, we're saying that once n n nn gets large enough, the running time is at least k1⋅n k\_1 \cdot n k1​⋅nk, start subscript, 1, end subscript, dot, n and at most k2⋅n k\_2 \cdot n k2​⋅nk, start subscript, 2, end subscript, dot, n for some constants k1 k\_1 k1​k, start subscript, 1, end subscript and k2 k\_2 k2​k, start subscript, 2, end subscript.