# Homogeneous Coordinate
## Metadata
**Status**:: #x
**Zettel**:: #zettel/fleeting
**Created**:: [[2024-03-28]]
**Topic**:: [[♯ Math]]
## Synopsis
The Homogeneous Coordinate system is an extension of Euclidean plan. It adds additional points called points at infinity.
Homogeneous coordinates simplify computations and are widely used in [[♯ Graphics Programming]] and [[Elliptic Curve]].
(**similar**:: [[Jacobian Coordinate]])
## Introduction
Homogeneous coordinates has one more dimension than the Cartesian coordinates. For example, the homogeneous coordinates in 2D space is a triple $(x, y, z)$.
In Homogeneous coordinates, if $\lambda \neq 0$, $(x, y, z)$ and $(\lambda x, \lambda y, \lambda z)$ represent the same point.
When $z\neq0$, $(x, y, z)$ represents the point $(\frac{x}{z}, \frac{y}{z})$ in the 2D space.
When $z = 0$, $(x, y, 0)$ represents the point at the infinity in the direction $y:x$.
## References
- [[Wikipedia Authors - Homogeneous coordinates (Highlights)]]
- [Homogeneous coordinates - Wikipedia](https://en.wikipedia.org/wiki/Homogeneous_coordinates)